Composite Binary Losses
نویسندگان
چکیده
We study losses for binary classification and class probability estimation and extend the understanding of them from margin losses to general composite losses which are the composition of a proper loss with a link function. We characterise when margin losses can be proper composite losses, explicitly show how to determine a symmetric loss in full from half of one of its partial losses, introduce an intrinsic parametrisation of composite binary losses and give a complete characterisation of the relationship between proper losses and “classification calibrated” losses. We also consider the question of the “best” surrogate binary loss. We introduce a precise notion of “best” and show there exist situations where two convex surrogate losses are incommensurable. We provide a complete explicit characterisation of the convexity of composite binary losses in terms of the link function and the weight function associated with the proper loss which make up the composite loss. This characterisation suggests new ways of “surrogate tuning”. Finally, in an appendix we present some new algorithm-independent results on the relationship between properness, convexity and robustness to misclassification noise for binary losses and show that all convex proper losses are non-robust to misclassification noise.
منابع مشابه
Composite Multiclass Losses
We consider loss functions for multiclass prediction problems. We show when a multiclass loss can be expressed as a “proper composite loss”, which is the composition of a proper loss and a link function. We extend existing results for binary losses to multiclass losses. We subsume results on “classification calibration” by relating it to properness. We determine the stationarity condition, Breg...
متن کاملImproved Binary Particle Swarm Optimization Based TNEP Considering Network Losses, Voltage Level, and Uncertainty in Demand
Transmission network expansion planning (TNEP) is an important component of power system planning. Itdetermines the characteristics and performance of the future electric power network and influences the powersystem operation directly. Different methods have been proposed for the solution of the static transmissionnetwork expansion planning (STNEP) problem till now. But in all of them, STNEP pr...
متن کاملConvexity of Proper Composite Binary Losses
A composite loss assigns a penalty to a realvalued prediction by associating the prediction with a probability via a link function then applying a class probability estimation (CPE) loss. If the risk for a composite loss is always minimised by predicting the value associated with the true class probability the composite loss is proper. We provide a novel, explicit and complete characterisation ...
متن کاملConsistency of Surrogate Risk Minimization Methods for Binary Classification using Classification Calibrated Losses
In the previous lecture, we saw that for a λ−strongly proper composite loss ψ, it is possible to bound the 0 − 1 regret in terms of its ψ−regret. Hence, for λ−strongly proper composite loss ψ, if we have a ψ− consistent algorithm, we can use it to obtain a 0 − 1 consistent algorithm. However, not all loss functions used as surrogates in binary classification are proper, the hinge loss being one...
متن کاملSurrogate Regret Bounds for the Area Under the ROC Curve via Strongly Proper Losses
The area under the ROC curve (AUC) is a widely used performance measure in machine learning, and has been widely studied in recent years particularly in the context of bipartite ranking. A dominant theoretical and algorithmic framework for AUC optimization/bipartite ranking has been to reduce the problem to pairwise classification; in particular, it is well known that the AUC regret can be form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 11 شماره
صفحات -
تاریخ انتشار 2010